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Abstract. We study the phase diagram of the extended Hubbard model in the atomic limit.
At zero temperature, the phase diagram decomposes into six regions: three with homogeneous
phases (characterized by particle densities 0, 1 and 2 and staggered charge denaity 0)

and three with staggered phases (characterized by the der;sme% 1 and3 3 and staggered
densities|A| = % 1, and 2) Here we use Pirogov-Sinai theory to analyse the details of the
phase diagram of this model at low temperatures. In particular, we show that for any sufficiently
low non-zero temperature the three staggered regions merge into one staggered,redfioout

any phase transitions (analytic free energy and staggered order paramhetéhin S.

1. Introduction

The theory of strongly correlated electron systems is nowadays a subject of vigorous
research. The interest in these systems is stimulated, to a large extent, by attempts
at explaining the mechanism of high-temperature superconductivity [MRR90,Dag94], the
phenomenon of electron localization in narrow-band systems [IILM75] and properties of
guasi-one-dimensional conductors [Hub79], to name a few. Among the models that are most
frequently studied is the Hubbard model augmented by a nearest-neighbour interaction. This
model, known as the extended Hubbard model, is defined by the following Hamiltonian:

__chwc]a—i—HC —i—UZn”nH—i—WZnnj <u+zW+ )an

€A €A

(1.1)

In equation (1.1) we used the following notation: at each&itéa d-dimensional bipartite
lattice A, with z nearest neighbours, there are creation and annihilation opesrgjoasidc;

of the electron with up and down spin,=*, |, that satisfy the canonical anticommutation
relations, whilen; , := ¢} ci, andn; := n;y +n; . The first term of the Hamiltonian

(1.1) stands for the |sotr0p|c nearest-neighbour hopping of electrons, the second one is the
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familiar on-site Hubbard interaction, the third term represents the isotropic nearest-neighbour
interaction, and the last one the contribution of the particle reservoir characterized by the
chemical potential.. We have introduced the shiftW + U/2 in order to move the hole—
particle symmetry point (the half-filled band) to the vajue= 0. Originally, the second and
the third terms were supposed to simulate the effect of the Coulomb repulsion between the
electrons, hence only positivé and W were considered. Later on, in various applications
of the model, the parametersU and W represented the effective interaction constants that
also take into account other interactions (for instance with phonons). Thet@fared W
could take negative values as well. In this papewill be allowed to change its sign while
W always stays positive.

The so-called narrow band case of the extended Hubbard mode|t|i.& |U]|, is
of special interest in physical applications of the model. It has been studied by means
of various approximate methods in many papers (see for instance [Lor82] and references
guoted there). These studies revealed the existence of staggered charge order at the hole—
particle symmetry point. The staggered charge order is characterized by a non-vanishing
order parameter

A= lim [ATEY eing) (1.2)

A
7100 €A

whereg; assumes two values, 1 erl, depending on which sublattice of the bipartite lattice
A the sitei belongs to, and.) stands for the Gibbs state.

Rigorously, the existence of staggered charge order has so far only been established in
the so-called atomic limit — 0 [Jed94]. While the above-mentioned approximate results
suggest that the staggered charge order persists in the corresponding narrow band model, the
methods used in [#94] unfortunately do not allow us to establish this rigorously, because
they rely on the reflection positivity of the atomic limit model which fails to be true for
non-zerot.

Here we propose to study the atomic limit of the model (1.1) using a different strategy,
based on the by now classical methods of Pirogov and Sinai [PS75], see also [Zah84,BI89].
On the one hand, these methods will allow us to study detailed properties of the low-
temperature phase diagram in the atomic limit, and on the other hand they allow for an
extension to non-zerg treating the narrow band Hubbard model as a quantum perturbation
of thet = 0 model. Namely, combining the methods developed here with those from
[BKU95], we are able to rigorously prove the existence of staggered charge order in the
narrow band Hubbard model [BK95].

In the atomic limit, it is convenient to rewrite the Hamiltonian (1.1) in a form that
makes the hole—particle symmetry apparent. Namely, introdu@ing= n; — 1, we have

H:JmH,=ZQin+%ZQE—MZQi (1.3)

(4.9) ieA ieA

where we passed to dimensionless paramdieend i, settingW = 1. Note that in the
atomic limit all operators appearing in the Hamiltonian commute. Therefore, the model (1.3)
can be viewed as a two-component classical lattice gas or, equivalently, as the classical gas
with four possible states, @, |, 2 in each site, that correspond to an empty site, a singly
occupied site with spirt or |, and a doubly occupied site, respectively.

In the following, we shall present and discuss the phase diagram of the model (1.3)
on the latticeZ?. The ground-state phase diagram is shown in figure 1. (Thew) plane
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Figure 1. Ground-state phase diagram. There are three open reffion$iy and H; with no
staggered charge ordek (= 0), and three open regioi$g, o), S;4+,—; andSi_ o), with staggered
charge orderA| = 3, |A| = 1 and|A| = 3, respectively.

decomposes into six open regions. In each of the regibnsHy, and H_, there is a unique
homogeneous ground state, whose particle depsityiven by

— -1 .
p=Jm AT (0i+ 1) (1.4)

SN

equals 0, 1, and 2, respectively. The remaining three regipns,, S;; o andS;_ o are
characterized by staggered charge-order. Namely, in the régignthere are two staggered
ground states, denoted,[p] and [b, a], with Q; = a on one sublattice an@; = » on the
complementary sublattice. Note that the staggered order paramdtenon-vanishing in
the whole staggered regighand jumps fromA| =1to |A| = % at the boundary between
SH»*} and S{,,o} or S{ﬁo}.

Using reflection positivity it has been shown d@4] that the staggered long-range order
in the regionsS persists at small temperaturés= 1/k8 > 0, provided one stays sufficiently
far away from the boundary betweeh and the homogeneous regio#g, a = 0, +.
However, this does not exclude the existence of a phase transition inside the staggered
regionS. Namely, in view of the discontinuity oA at the zero-temperature transition lines,
one could expect thah reveals a phase transition at non-vanishing temperatures as well.
Indeed, mean-field arguments [MRC84] predict a first-order transition surface emerging
from the zero-temperature transition line separaipg_, from S;; o, and similarly for the
line separatingS, _; from S._ q.

Using a suitable notion of restricted ensembles we are able to analyse this question
rigorously. Our main result here is to show the absence of any such phase transition, in
contrast to the above-mentioned mean-field results.

Theorem A Consider the complemestof the union of closed homogeneous regidfs
a=0,+,

S=RI\(H_UHyUH,)
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and let
§© = {x e S|dist(x, S) > €} .

Ford > 2 and anye > 0O there exists a constapf < oo (depending ore andd) such
that, for all gy < B < oo and (U, u) € S, there are exactly two phages—)even and
(—)odd- Moreover,A > 0 for the phas€—)even A < 0 for (—)oqq, and both the free energy
density, f (8, U, u), and the staggered order parameters of the two phasgs(s, U, 1)
and Aoga(8, U, n), are real analytic functions df andu in S©.

Remark. As mentioned before, the zero-temperature staggered order paraméienps
from A = +1 to A = £} at the boundary betwee§i, _; and Si; o or Si_q. It is
interesting to relate this jump to the smooth behaviourfoe= 1/k > 0. As we will
see in section 3, the crossover between these two behaviours is described by a hyperbolic
tangent. Taking, for example, the order parameter of the even phase in the vicinity of the
boundary between, sag; _, and S, one obtains that
A~§+}tank(72d_u_w2)
4 4 kT

asT — 0.

Turning to the homogeneous regiois, a = 0, &, we use standard Pirogov—Sinai
theory to discuss the low-temperature behaviour inside the corresponding rdgjons
This enables us to prove analyticity, unicity and translation invariance of the homogeneous
phases.

As for the boundaries between the staggered rediaand the homogeneous regions
H,, we note that the zero-temperature coexistence line betwWgemd Si; _, gives rise to
a coexistence line surface of the two staggered phases with the homogeneous one. With
decreasing, this surface bends towards negativei.e. above the ground-state coexistence
line betweenHy and Sy _; the corresponding homogeneous phase is stabi®4]e

The remaining part of the zero-temperature boundary betwemmd the homogeneous
regions is of similar type to the boundary between staggered and homogeneous phases in
the antiferromagnetic Ising model. For example, at the boundary bet§jgen and H,,
it is possible to join the staggered phase, |], without any energy cost, to the second
staggered phase-| +], going through the homogeneous phase stab,ir{see [Jd94] and
also section 2 below for a more detailed explanation). We therefore expect that this phase
boundary turns, for non-zero temperatures, into a second-order transition line. Actually, in
the limit U — —oo the extended Hubbard model in the atomic limit becomes equivalent
to the Ising antiferromagnet (with homogeneous external fieldwhere this fact was
rigorously proven [KY93]. In a similar way one expects that all other boundaries between
homogeneous and staggered phases, except for the boundary bé&iyeethS,, _, already
considered above, correspond to second-order transitions.

We summarize our knowledge of the phase diagram of the extended Hubbard model in
the atomic limit in the following theorem (see also figure 2).

Theorem B Letd > 2 andg be sufficiently large. Then there exist open regié¢hss),
a =0, £, andS(B8), where Hy(B8), and S(B) touch on a curve,

L(B) = 35(B) NdHo(B) # ¥

T As usual, a phase is defined as an extremal Gibbs state which is periodic/itattice directions.
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u/2d
Hy(B)

Figure 2. Phase diagram at low temperatures. Thin curves denote the conjectured second-
order transitions, while the thick curve, separating the two-phase staggered fefjimm the
homogeneous regioflp, is first order. Shaded are regions over which we have no rigorous
control (they shrink to the zero temperature lines with> o).

such that the following statements are true.

(i) For (U, n) € S(B) there exist exactly two phases, a ph&séeenwith A > 0 and a
phase(—)oqq With A < 0. These phases are periodic with period 2 and both the free energy
density, f (8, U, 1), and the staggered order parameters of the two phasgs(s, U, 1)
and Aqqq(B, U, ), are real analytic functions df andu in S(8).

(i) For (U, n) € H,(B), a = 0, £, there is exactly one phage-),. For this phase,

A = 0, it is translation invariant, and the free energy densftyg, U, 1), is a real analytic
function of U and i in H,(8).

(iif) On the boundarny (8) betweenS(8) and Hy(B), the three phasds-),, (—)even and
(—)odq COeXist. Furthermore, all periodic Gibbs states on this line are a convex combination
of those three phases.

(iv) As 8 — o0, H,(B) > H,,a =0, £, andS(8) — S.

Proof of theorems A and Blheorems A and B are immediate consequences of propositions
1-4 that are stated and proved in section 3. O

Before passing to propositions 1-4 we turn to a new representation of the model (1.3)
in terms of spin-1 variables and then to a detailed examination of its ground-state phase
diagram.

2. Structure of ground states and restricted ensembles

In order to rewrite the model (1.3) in terms of a classical spin system, we recall that
all operators appearing in (1.3) commute. However, fixing all the eigenvalues the
operatorsQ;, S; € {—, 0, +}, does not completely specify the state of the system, because
S; = 0 corresponds to two possibilities , = 1 andn;, = 0 orn;, = 0 andn; , = 1.
In the partition function of the classical spin model, this leads to a factor of 2 for every
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singly occupied site, and therefore to an overall factor2-29 . In this way the quantum
system (1.3) is mapped onto an antiferromagnetic spin-1 model, with

U 2
H:ZSiSj—}-EZSi—/LZSi (2.1)
(2,9) icA i€A
where
U=U-281In2. (2.2)

It is useful to rewrite the Hamiltonian (2.1) as a sum over nearest-neighbour A€8nsS; ),
namely

H = "h(Si.5)) (2.3)

(&.3)

where we introduced the energy per pair of nearest-neighbour sites

u 0
h(Si. 8j) = SiSj + 4 (SE+ 85 = o (Si+5)). (2.4)

This form of the Hamiltonian makes the task of constructing the ground-state phase diagram,
i.e. determining the six regiond,, a = 0, £, S;+ —}, Si+,00 and S— g, mentioned in the
previous section, an easy exercise. The energies of the nearest-neighbour spin configurations
are

U u
h = 1+ - —-= 2.5a
(+,+) + o g (2.58)
U on
— _ 2.
h(+,00= 0+ 24 (2.50)
h(+,—-)=-1+ U (2.5c)
9 - 2d .
U n
) = 4= 2.
hO.—) = 0+ 4, (2.5d)
h(0,00= 0 (2.%)
U nu
=)= 14+ —+=. 2.
h(=, -) o7t (2.5)
Using equation (2.5), we find three homogeneous regions
H, : U )|M max11+0 (2.6a)
= - > —_— .
+ , U 2d , 1d

with minimal energy pair§+, +),

&l <

H_ = {(U,M)| _2ltl>max{l’l+” (2.60b)
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with minimal energy pairg—, —), and

,;}f’} (2.60)

Hy = {(U, w | max{ ad

‘ﬁ
2d
with minimal energy pairg0, 0); and three staggered regions
. 2 . U U 1
Sty 1= {(U, w | ‘Z‘ < mln{l, 1- 4d} and id < } (2.7a)

with minimal energy pairg+, —) and (—, +),

n U U nu
S =1, — < — <1+ — and — < — 2.
{+.0} {( /L)|4d<2d< vy 4d<2d} (2.70)
with minimal energy pairg+, 0) and (0, +), and
Sio = {(U, w | % < —% <1+ % and % < —2’;} (2.7c)

with minimal energy pair§—, 0) and (O, —). Thus, in each of the regiond,, a = 0, +,
there is a unique homogeneous ground configurafyn= a};c». On the other hand, in
each of the regionsy, ;) there are exactly two ground configurations, such that, when on
one sublattices; = a, on the complementary on® = b, and vice versa. In order to relate
the formulae (2.6) and (2.7) to figure 1, we notice thiat U for g = co.

At this moment, let us remark that the above analysis of ground configurations shows
that the components of H (cf equation (2.4)) constitute a so-calledpotential [Sla87].
Moreover, since in each of the regiofs., Ho, H—, S+ -}, Si+.0p and Si_ g there are only
finitely many ground configurations, one can readily apply standard Pirogov—-Sinai theory to
study the low-temperature properties of the corresponding phases, away from the boundaries
of these regions.

On the boundaries of the regiods., Ho, H-, Si+,—}, Si+,0p and S;_ g}, the structure of
the ground states is more complicated. Combining the minimal energy pair configurations of
the corresponding adjacent regions, one can construct infinitely many ground configurations
everywhere, except for the boundary betweSen_, and Hy. On the latter boundary there
are exactly three ground configurations, namely those that correspond to the adjacent regions.
This, of course, also places this case into the realm of standard Pirogov—Sinai theory.

There is an important difference between the infinitely degenerated boundaries shared
by staggered and homogeneous regions and those shared by two staggered regions. In the
first case, i.e. on the boundary between, sdy, and S+ _, the minimal energy pairs of
both regions, namely the paifs-, +), (+, —) and(—, +), can be combined into an arbitrary
configuration made out off’ and ‘—’, as long as no nearest-neighbour pair of minuses is
present. Mutatis mutandis the same is true for the other infinitely degenerate boundaries
between staggered and homogeneous regions. One therefore obtains the same structure of
ground states as in the Ising antiferromagnet at the critical field, presumably giving rise to
surfaces of second-order transitions at non-zero temperature.

In the second case, i.e. on the boundaries shared by two staggered regions, the situation
is different. Considering, for instance, the regifin that consists of5;;. _, S0, and the
boundary shared by these regions, we introduce two disjoint classes of configurétigps,
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andg;fdd. Namely, we defingjZ,., as the set of all configurations, for whidh = + on the
even sublattice, whileS; = 0 or — on the odd sublattice, and the s&f, by interchanging
the roles of the two sublattices. Then, for all pointsSin every ground configuration falls
into one of these two disjoint classes. This already suggests using),,ia version of
Pirogov-Sinai theory with the set,., and G, playing the role of restricted ensembles

[BKL85] that replace the ground statesThe same remark applies to the regi®in made
of Si+.-}, Si—0 and their shared boundary, and the corresponding&gisandg_,

3. Proof of theorems A and B

As mentioned above, theorems A and B are an immediate consequence of the following
four propositions.

Proposition 1 Consider the regions
H® = {x € H,|dist(x, HS) > ¢} a=0,%+.
For d > 2 there exists a constaht= b(d) > 0, such that for alk < o0, 8 > b/e, and

(U, n) € H®, there is exactly one phage-),. For this phaseA = 0, it is translation
invariant, and the free energy densifys, U, w) is analytic in

R R
Hff):{(ﬂ,U,u)e(Cg|Re,32b/e,< epu eﬁ“>€ ©

Res " Rep ) € } (3.1)

Proof. Except for the last statement, the proposition follows immediately from standard
Pirogov—Sinai theory [PS75,Mar75,Zah84]: Given the relations (2.5) and (2.6), one gets,
for a suitable constant = a(d) > 0 and(U, ) € H9, the inequality

Bh(b, c) = Bh(a,a) + Bae (3.2)

provided (b, ¢) # (a,a). As a consequence, all excitations of the ground state) are
exponentially suppressed, with a ‘Peierls constant &8¢ wherea > 0 depends only on
the dimension.

In order to prove the last statement of the proposition, one needs a representation in
terms of a convergent contour expansion instfe¢’, where the Hamiltonia#/ is complex.
This situation has been dealt with in [BI89]. In order to prove the corresponding Peierls
condition, one needs a relation of the form (3.2) for thal part of 8H, namely

Reph(b, c) > Reph(a, a) + (Ref)ae . (3.3)
This leads to the regior&(©. O

T Notice that different configurations fromif,, (and similarlyg;jd) attain, in general, different energies. In
particular, only on the boundary betwegn. _, andS; g, all configurations frong ., are ground configurations.

As a consequence, the version of the Pirogov—-Sinai theory for lattice systems with residual entropy [GS88,SGL89]
does not apply here. Namely, it would need in our case an assumption that everywhere in the coexistence region
S all configurations fromgg,, (and g;’dd) are ground configurations.
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Proposition 2 Consider the regionsy,; and the corresponding sef,, {a,b} =
{+,-},{+,0},{—,0}. Ford > 2 there exists a constant = b(d) > 0, such that for

all € < 00, B> b/e, and(U, u) € S, there exist exactly two phases, the phésgeven
with A > 0 and the phasé—),qg With A < 0. These phases are periodic with period
2 and the free energy density,(8, U, ), as well as the corresponding staggered order

parametersAeved 8, U, ) and Aqqq(8, U, 1), are analytic in

(3.4)

RepU R
Sy = {(ﬁ, U, ) € C3| Rep > be, < ep eﬂ“) c §© } .

Ref ' Rep fa.b}

Proof. Again, the proof is standard, except for the last statement. Actually, in view of
the essential singularities associated with first-order phase transitions [Isa84], the analyticity
proof in the coexistence regior:&{;?b} is more subtle than that in the single-phase regions
HE.

We start with the observation that a Peierls condition of the form (3.3), namely

Reph(c,d) > Reph(a, b) + (Rep)ae forall {c,d}# {a,b} (3.5)

is valid in all of S{(jfb}. Introducing truncated contour models as in [Zah84,BI89] to expand
about the two staggered ground statesh] and b, a], one therefore obtains a convergent
cluster expansion for the corresponding ‘truncated free energigs, and foqq. Next we
note that

feverd B, U, 1) = foad(B, U, 11) forall (B,U.u) €S,

due to the translation symmetry of the model. As a consequence,

Re(BfeverB: U, 1)) = Re(Bfoud(B. U, )  forall (B,U,p) €S,

The results of [BI89] then imply that both the even and the odd phase are stable in all of
S{‘jfb}, implying, in particular, that the truncated free energies are equal to the corresponding
‘physical free energy’f (8, U, u) obtained as the limit of (logarithms of) finite volume
partition functions. As a consequencg(g, U, u) can be expressed as an absolutely
convergent sum of analytic terms, implying thé¢s, U, ) is analytic itself. The stability

of both the even and the odd phase also implies the convergence of the contour expansion for
the staggered order parametéts,e(8, U, n) and Aqgq(B, U, 1), yielding their analyticity

in Sie’y- O
Remark. Let us note the differences between the situation of proposition 2 and the phase
coexistence of, say, an Ising ferromagnet at zero fieldn the situation of proposition 2,
where the two phases-)even and (—)oqq Can be obtained from each other by a translation,
feven = fodg throughout the complex regiaﬁ{(j?b}, a statement which is stronger than the
stability condition R€Bfevenn = Re&(Bfodd). FOr the Ising model, on the other hand, the
symmetry relating the two phaseés), and(—)_ requires a change of the sign bf As a
consequence, no open neighbourhdod C of 4 = 0 can be found such that both the plus
and the minus phase are stabld4n Furthermore, on the coexistence line/Re 0 where

both phases are stablg, # f_, even though the weaker condition B¢, ) = Re(8f_) is

true for Reh = 0.
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Proposition 3 Let R be the union ofHp, S+ -, and their common boundary, and let
R© = {x e R|dist(x, R°) > €}. Ford > 2 there exists a constaht= b(d) > 0, such
that for alle < co and 8 > b/e there exists a curvé(p), separatingR(© into two open
reg|0nsR(€) and R{(E) _y» such that the following statements are true.

@ In Ros), there exists exactly one phase)o. This phase is translation invariant with
A =0.

(i) In R{(i)ﬁ} there are exactly two phaseés)even @nd (—)oqq, Characterized by > 0
and A < 0. Both phases are periodic with period 2.

(i) On the boundaryL(B) betweenRy’ and R(¢ _,, all three phase$—)o, (—)even
and (—)oqq coexist. Furthermore, all penodlc GIbbS states on this curve are a convex
combination of these three phases.

(iv) As a function of U and u, the free energyf is real analytic inR© \ L(B), and
the staggered order parameters of the two ph&sés.en and (—)odd, Aeved8, U, u) and
Aoad(B. U, ), are real analytic inR{s _,.

Proof. Again the proof is standard. One now introduces three different truncated contour
models: one for the excitations about the homogeneous configuk&iénand two for the
excitations about the two staggered configuratichs—) and (—, +). In the regionR®,

and more generally in the complex region

R© = {(U,n) | (ReU,Reu) € R} (3.6)

the model again satisfies a suitable Peierls condition provideid big enough. This leads
to the convergence of the cluster expansion for the corresponding truncated free energies
fOr feven and fodd in R D R,

Given the ‘degeneracy removing condition’

d 1
h —h = — g
q(rr 0 =h0.0) = 5 =0 @)
and the symmetry relation

JeverdU, ) = foad(U, 1) (3.8)

the proof of statements (i)—(iii) is nhow an easy application of the methods of [Zah84].
Actually, the complex analogue of (3.7), namely the degeneracy removing condition

1
dRe U(Reh(+ —) — Reh(0,0)) = i 0 (3.9)
together with the validity of (3.8) in the complex regi®(© leads to the eX|stence of a
phase transition surfacg(p) that separate®R© into two open regions: a regloﬁ
which ReB/fo(U, 1) < Re(BfevedU, 1)) and f (U, ) = fo(U, p), and a reglonR“)
in which REBfo(U, 1)) > R&(BfevedU, n)) and f (U, u) = feverlU, u), see [B|89T As
a consequence, the free enerfjyof the model can be rewritten as a convergent sum of
analytic terms in bottR§’ andR({ _,, leading to the analyticity of in R© \ £(8) and
hence the real analyticity of in R \ L(B8). In a similar way, one obtains the real
analyticity of the charged order parametéts,ed 8, U, 1) and Agga(8, U, 1). (]

t In the language of [Zah84,BI89REf) is the region where the homogeneous phase is stable??éﬁq} is the
region where the two staggered phases are stable.
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Proposition 4 Consider the region$;. introduced in the last section, and the corresponding

setssf. Ford > 2 andm = = there exists a constant= b(d) > 0, such that for all

€ <00, B>b/e,and (U, n) € S, there exist exactly two phases, a ph&s@eyen With

A > 0 and a phas&—)qqg With A < 0. These phases are periodic with period 2 and

both the free energy density(8, U, 1), and the corresponding staggered order parameters,
Aever(B, U, ) and Aoaq(B, U, 1), are real analytic functions df andu in S©.

Proof of proposition 4.Without loss of generality, we may assume ti&t ) € Si. In
order to prove the proposition, we introduce an auxiliary Ising variable o (S;) as

+ if Si=+

— if S; {0, -} (310

o (S) = {

and rewrite the model (2.1) in terms of an effective Hamiltonfi#f (o). We then prove that
the HamiltonianH®™ has two ground states®®" and g, corresponding to the restricted
ensembleg,., and G/, introduced at the end of the last section,

glgven —¢ and g?dd =—¢; (3.11)

and that the excitations above these ground states obey a suitable Peierls condition. Here,
as in section l¢; = +1 on the even and; = —1 on the odd sublattice.

We start with some notation. We consider a bax= [1, L] N Z¢, its boundary
dA = {1 € A°|dist(¢, A) = 1}, the setB(A) of nearest-neighbour bonds j) with at least
one endpoint inA, and the union ofA and its boundaryA = A U dA. Here, as in the
following, dist(-, -) denotes the/; distance inZ?. As usual, we call two set¥, V' € Z¢
adjacent or touching if dis¥, V') = 1, and a seV C Z¢ connected if for any two points
i, J € V there is a sequence of adjacent pointirhat joinss to j.

Keeping in mind that we want to construct finite temperature stateés which are
small perturbations of the restricted ensemlgfgs m = ‘even’ or ‘odd’, we introduce an
effective HamiltonianH " (o | m) in A with the boundary conditions = even, odd, by

e PHY Onlm) _ Z 1—[ e Bh(Si.S)) (3.12)
. op=o.ieh (4 5 e B(A)
A‘a(si)=g;".iea/\

The corresponding finite volume Gibbs states are

. 1
© Za(D)

(')m,A

3 gt (3.13)

O
with

Zu(A) =Y e P alm) (3.14)

OA

Extending the configuration, to A by settingo; = g for i € dA, we define a nearest-
neighbour pair(z, j) € B(A) as excitedin the configuratiorns, if o; = o; and a point

i € A asexcitedif it is contained in an excited bond. Note that the notion of whether a
bond (z, 7) that joins the volumeA to its boundaryd A is excited or not depends on the
boundary condition.
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At this point, contours and ground-state regions are defined in the standard way:
Given a configurations, (and one of the two boundary conditions introduced above),
the contoursYs, ..., Y, corresponding to the configuratian, are defined as pairs of the
form Y = (suppY, oy), where supfy is a connected component of the set of excited points
and oy is the restriction ofo; to suppY. The ground-state regionsire defined as the
connected components of the set of points which are not excited. Note that the restriction
of o; to a ground-state regiof is staggered, and hence equal to the restriction of one
of the two ground states t6, o¢c = g, wherem = m(C) may vary from component to
component.

An important property of a set of contours, ..., Y, corresponding to a configuration
o, is that they ‘match’. In order to define this notion, we note that each cofitol@termines
the value ofo; on all pointsi € A which touch its support because all bonds joining the
support ofY to such a point are not excited. The contdutherefore determines the value
of m(C) for all ground-state region€ touching its support. We say th#tattaches dabel
m(C) = my(C) to these ground-state regionklatching of the contoursyy, ..., Y, is the
statement that the labels attached to a given ground-state r€digrdifferent contours are
identical and compatible with the boundary condition. A minute of reflection now shows
that to each setYs, ..., Y,} of matching contours with di&uppY;, suppY;) > 1, k # [,
there corresponds exactly one configuratign The partition functionz,,(A) can therefore
be expressed as a sum over sets of matching contours, once the HamiHXﬁ'(m | m)
has been expressed in terms}af ..., Y,.

We will now show that this can be done in the form

n
g BH (orIm) _ o=BH (g | m) HZ(Yk) (3.15)
k=1

wherez(Y;) are contour weights obeying a Peierls condition
|2(Vp)| < e77IsuPPY] (3.16)

with sufficiently large Peierls constamnt

We start with an explicit calculation of the Hamiltonialf“(cr,\ | m) for the configuration
oa = g% with no contour. In this configuration, each point A with o; = — has 2
nearest neighbourg € A with oj =+ if 4 € A, and one nearest neighbogire A with
oj =+ if i € 9A. Sinces; = o(S;) = + implies S; = 4, the summation over the spin
variable S; in (3.12) therefore leads to a factor

P Z @ 2Ph(Si+) — g 24ph(O0.+) 4 o~2dBh(=+) (3.17)
St (S)=—

if 2 € A, and to a factor

A= Z efﬂh(SiA') — e*ﬂh(O,Jr) + efﬂh(f,Jr) (318)
Sito (Si)=—

if ¢ € 9A. Per bond, this yields the energy

1
hgz—BIogX if 4e€dAando; =g!"=—
ho (3, 3)) = 1 (3.19)
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For the energy of the configuratigyf’, this gives

Hf (g im)y =Y hE((i.4). (3.20)
(,3)eB(A)

Remark.Obviously, the boundary correction (3.19) does not affect the specific ground-state
energy

H 1 eff, _m
em = AII_I?1Z(1 mHA (g |m) (3.21)

SO thateeven = eoqe- It does affect, however, the finite volume ground-state energies
HY (g [ m). )
In order to calculate the weight &X'~ 1™ for a configurationo, corresponding

to a non-empty set of contourds,...,Y,}, we extract from (3.12), for each contour
Y € {Yy1,...,Y,}, the factor
=y [ e”e. (3.22)

Sy:o(Si)=0; (i,J)€B(Y)

Here B(Y) is the set of all bondsi, j) € B(A) such that either

(i) both endpoints ofz, j) are in the support of, or

(ii) only one endpoint of(z, 5) lies in the support of, and this endpoint corresponds
to a valueo; = —1.

Note that the second class of bonds are those bonds which couple the spin variables in
the support ofY to the spin variables i\ \ suppY. The remaining sum in (3.12) can be
easily calculated because all poirte A \ (suppY1 U --- U suppY,) with o; = — are not
excited. The summation over the corresponding spin varidplinerefore again leads to
factorsx anda’, giving a factor s (%30 for all the bonds iNB(A)\ (B(Y1) U- - -UB(Y,,)).
Extracting the factor

[ e

(4.5)€B(Y)

from the activities (3.22), we therefore obtain a representation of the form (3.15), with

=¥ [] erecs-@n, (3.23)

Sy:o(Si)=o0; (,3)€B(Y)

We are left with the proof of the Peierls condition (3.16). We start with the observation
that for (U, u) € S c S, and arbitrary values for the spirss and S,

h(S;, S;) = min{h(0, +), h(—, +)} (3.24)
while
h(Si, S;) = min{i(0, +), h(—, +)} + ae (3.25)

for some dimension-dependent constant> 0 whenever the bondsi, j) is excited.
Combining (3.24) and (3.25) with the fact that

hg (i, 3)) < min{h(0, +), h(—, +)} (3.26)
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we obtain the bound
i< Y. [ e (3.27)
Sy:0(Si)=0; (i,5)€B*(Y)

where B*(Y) is the set of excited bonds iB(Y). Bounding|B*(Y)| from below by
ZIsuppY|, and the number of terms in the sum ovgr from above by 2UPP*I, we obtain
the bound (3.16) with

e = 2e 2Pec (3.28)

Given equations (3.14)—(3.16), the partition function (3.14) can be expressed as the
partition function of a contour system with exponentially decaying weights

n

Zy(A) = e PHEERIm 3N T2 (3.29)
(Y1,...Y,} k=1
where the sum runs over sdtg, ..., ¥,} of matching contours obeying the compatibility

condition that disisuppYy, suppY;) > 1 for k # [. As a consequence, the model can be
again analysed by standard methods, see e.g. [Zah84]. One obtains the existence of the
limits

(= = IM (=) (3.30)

— 00
as periodic Gibbs states with > 0 and A < 0, respectively, the fact that these states
are extremal, and the fact that all other periodic Gibbs states are convex combinations of

(_)even and <_>odd-
Considering, finally, a suitable complex neighbourhood of the regﬁﬁm e.g.

SV = (U, ) | (ReU, Rep) € S and [ImU| <8, | Imu| < 8} (3.31)

with § sufficiently small, one easily establishes a Peierls condition with a slightly smaller
Peierls constant = 1(8,¢,8,d). The methods of [BI89] then giyethe free energy
density f and the staggered charge-order parametrs{(8, U, u) and Aggq(B, U, 1) as
convergent sums of analytic terms &{“*, implying their analyticity inS'“” and hence

their real analyticity inSf). This completes the proof of proposition 4. O
Remark It is intriguing to relate the first-order jump of the staggered order parameter at
T = 0 to the analytic behaviour at positive temperatures. To this end, we note that the
distribution of the spin variablé; in the restricted ensemblgk is given by
8(S;, +) if gl =+
u(Si) = { e-2aphesi
A

The finite temperature excitation above the corresponding ground stateg™ slightly

modifies these distributions, leading to corrections of the order®<). As a consequence,
the staggered order parameterin the regionSf) is given by

A ==£(3 + Ftanh2dB(h(0, +) — h(—, +)))) + O(e~F*)
=+£(3 + Jtanh(B(2d — u — U/2))) + O(e™P*) (3.32)

where the plus sign corresponds to the even phase and the minus sign corresponds to the
odd phase.

OS50 +8(Si, =) if gh=—

1 As in the proof of proposition 2, we use the fact that, by translation invariance, the corresponding truncated free
energiesfeven and foqq are equal in the whole complex regidﬁf“”.
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